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A TIME -DEPENDENT METHOD FOR CALCULATING SUPERSONIC 

BLUNT-BODY FLOW FIELDS WITH SHARP CORNERS 

AND EMBEDDED SHOCK WAVES 

By Richard W. Barnwell 
Langley Research Center 

SUMMARY 

A time -dependent numerical method for calculating super sonic blunt -body flow 
fields with sharp co rne r s  and embedded shock waves is presented. Axisymmetric and 
symmetric plane bodies can be treated. The method of characterist ics is used at the bow 
shock wave and body surface, and a two-step finite-difference method of second-orde, 
accuracy is used between the shock and body. A stability analysis of the finite-difference 
equations which accounts for  the effects of a nonorthogonal coordinate system is presented. 

Calculations for  flow over bodies with sharp and rounded corners  are compared with 
experimental and other theoretical results.  The influence of a parabolic free-stream 
velocity distribution on the flow over a spherically blunted cone is investigated, and a 
study of the effect of Mach number on the flow about a truncated cone is made. 

INTRODUCTION 

Time -dependent methods provide a means of calculating super sonic flow past blunt 
bodies with forward-marching numerical techniques because the problem of transient 
flow has hyperbolic equations and is well posed as an initial-boundary-value problem. 
Results for steady flow are obtained from the asymptotic solution to  the transieat problem. 
These methods can be used to calculate blunt-body flow fields with complicating features 
such as sharp co rne r s  on the body contour, embedded shock waves, and large transonic 
regions. 

A number of time -dependent methods have been developed for calculating flow past 
blunt bodies traveling at supersonic speeds. Evans and Harlow (ref. 1) introduced the 
particle-in-cell method, a finite-difference method of first-order accuracy in the mesh 
spacings which treats the bow shock wave as a continuous compression and which is 
formulated in a mixed Eulerian-Lagrangian f rame of reference. Eulerian methods of 
first-order accuracy which treat the bow shock wave as a continuous compression have 



been developed by Rich and Blackman (ref. 2); Bohachevsky and Rubin (ref. 3); Gentry, 
Martin, and Daly (ref. 4); Barnwell (ref. 5); Rusanov (ref. 6); and others. 

A finite-difference technique of second-order accuracy which treats shock waves as 
continuous compressions h a s  been developed by Lax and Wendroff (ref. 7). This technique 
has  been used by Burstein (ref. 8), Magnus and Gallaher (ref. 9), and others to solve the 
blunt-body problem. 

Another approach to  the blunt-body problem is to treat the bow shock wave as a dis- 
continuity. Sauerwein (ref. 10) used this approach and calculated the flow field by using 
the time-dependent method of characteristics. Godunov, Prokopov, and Zabrodin (ref. 11) 
developed a finite-difference method of first-order accuracy which treats the bow shock 
wave as a discontinuity. This method has  been extended and used to calculate complicated 
flow fields by Masson, Taylor, and Foster (ref. 12) and McNamara (ref. 13). Other 
methods which treat the bow shock wave as a discontinuity have been developed by Rusanov 
(ref. 14), Xerikos and Anderson (ref. 15), and Moretti and Abbett (ref. 16). The method 
of reference 16 employs the time-dependent method of characterist ics a t  the bow shock 
and body surface, and a finite-difference technique of second-order accuracy between the 
shock and body. 

The purpose of this paper is to  extend the method of Moretti and Abbett (ref. 16) so 
that flow fields about bodies with sharp corners  and flow fields containing embedded shock 
waves can be calculated. In order  to facilitate calculations near sharp corners,  a system 
of body-oriented coordinates which focuses a t  the co rne r s  is used, and a conserved form 
of the governing equations with derivatives which are well-behaved near the co rne r s  is 
employed. The use of the governing equations in conservation form also permits the cal- 
culation of flow fields containing embedded shock waves. An exact treatment is employed 
to  determine the multiple-valued solution at the sharp corner .  It should be noted that a 
brief description of the present method and some resul ts  calculated with it have been pre-  
sented in reference 17. 

SYMBOLS 
i 

4,Bi,Ci,Di quantities defined by equations (5) 

a speed of sound, also radius of flat nose 

B, c matrices defined by equations (A2b) and (A2c) 

D vector defined by equation (A2d) 
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E 

e eigenvalue of matrix E 

e fi, f i +  a, or fi - a  

F, Fc, FR 

f 

matrix defined by equation (A12) 

- 

quantities used in equation (B3) 

quantity defined by equation (8) 

matrix defined by equation (A8) G 

g quantity defined by equation (19), also eigenvalue of matrix G 

H 

N 

P 

Pt 

R 

Rb 

r 

'b 

total enthalpy, 2- p +  -(u 1 2  + v2) 
y - 1 P  2 

geometry index defined by equation (6) 

curvature of reference line 

curvature of shock 

wavelength of solutions in X- and Y-directions, respectively 

Mach number 

integer 

static pressure 

stagnation pressure 

distance from sharp corner  

radius of curvature of body contour segment 

perpendicular distance from axis of symmetry 

base radius 
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rC 

rn 

I-14-2 

S 

S 

W 

Y 

yb 

Z 

a! 

- 
a! 

P 

4 

radius of curvature of corner 

radius of curvature of nose 

quantities defined by equations (A6) 

arc length of body contour segment 

distance along surface from axis 

time 

velocity components tangent to and normal to shock, respectively 

quantity defined by equation (A14) 

velocity components normal to and tangent to body normals, respectively 

magnitude of velocity 

vector defined by equation (A2a) 

vector used in  equation (A5) 

distance along reference line from axis 

normalized distance f rom body surface defined by equation (9) 

distance normal to reference line 

distance between reference line and body surface 

distance along axis from stagnation point 

exponent used in equation (B3), 0 5 a! 

complex exponent 

shock angle 



Y ratio of specific heats 

At ,Ar  mesh spacing for t ime 

AX,AY mesh spacings for  X- and Y-coordinates 

W , A (  mesh spacings for q- and (-coordinates 

6 thickness of shock layer 

a 6  
ax ax 6' = - or - 

E percent deviation of f ree-s t ream velocity at distance r = 'b from axis f rom 
center -line value 

17, t coordinates along and normal to  shock, respectively 

- -  2 n A Y  2 r A X  17,t=- ____ 
LY ' Lx 

e angle between body normal and free-s t ream direction 

K damping coefficient which satisfies inequalities (15) 

A quantity defined by equations (A6) 

scale factor for  X-coordinate AX 

scale factor for q-coordinate Av 

I-1 quantity defined by equation (7) 

P density 

(3 angle between normal to body surface and normal t o  shock wave 

cp angle defined by equation (A13) 
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Subscripts: 

4 D  

angle defined by equation (A23) 

at base points of bicharacteristics 

b at body surface 

C 

C at corner  

Q. on center line 

l,m 

at corner  for x = x ~ , ~ ~ ~  

indices for  grid intersections for X- and Y-coordinates, respectively 

max maximum value 

min minimum value 

S immediately behind shock 

03 in f r ee  s t ream 

Super scripts: 

k t ime index 

* denotes conditions for smallest value of x where u = a 

<u> denotes first-order solution 

ANALYSIS 

The present method for calculating numerical solutions for time-dependent, inviscid, 
axisymmetric o r  symmetric plane flow past blunt bodies traveling at supersonic speeds is 
described in this section. The basic approach is the same as that of Moretti and Abbett 
(ref. 16) in that the method of characteristics is used at the bow shock wave and the body 
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surface, and a second-order finite-difference method is used between the shock and sur -  
face. However, a different coordinate system is used in the present method, and a 
broader c l a s s  of problems can be treated. 

The problem of transient supersonic flow past blunt bodies is treated as an initial- 
boundary -value problem and is calculated with forward-marching techniques. From an 
initial solution which can be very approximate, the flow is calculated at successive t ime 
intervals in a closed region which is bounded by the bow shock wave, the body surface, 
the axis of symmetry, and a line extending f rom the body to  the shock which is located 
downstream of the sonic line. At each t ime step, the flow is calculated first at points on 
the bow shock, then at points on the body, and finally, at points between the body and 
shock. Results for steady flow are obtained after many time steps when the time deriva- 
tives of the flow properties are sufficiently small. 

Calculations at Points Within the Shock Layer 

The basic coordinate system which is used in this paper is curvilinear and is 
oriented with respect to the body as shown in figure 1. The coordinate x is the distance 
dong  a reference line which is located a constant distance yb from the body surface, 
and the coordinate y is the perpendicular distance to the reference line and is positive 
outward. The velocity components u and v which are used in this paper a r e  normal 
to and tangent to the body normals, respectively, as shown in figure 1. 

The geometry of the reference line is expressed in t e r m s  of its curvature K, and 
the angle 8 between the normal to the reference line and a line parallel to the axis of 
symmetry. This angle is shown in figure 1. The quantities Kr and 0 a r e  related by 
the equation 

de  
' - d X  

K - -  

The quantity r is the 
symmetry, and A, is 
by the equations 

perpendicular distance f rom a point in the flow field to  the axis of 
the scale factor for the x-coordinate. These quantities a r e  given 

p x=x 
r =  cos  e(z) dii + y sin e(x) Jz,o 

and 

A, = 1 + yK, 

c 

(3) 
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The blunt bodies which are treated in this paper have profiles which are constructed 
of segments of constant curvature (straight-line segments and circular arcs).  The curva- 

ture  of a segment of the reference line is related to  the distance yb and the radius of 
curvature Rb of the corresponding body segment by the equation 

'b 1 +-  
Rb 

Straight body segments are associated with parallel straight reference line segments, 
whereas circular a r c s  on the body are associated with concentric circular a r c s  on the 
refereke line. In the vicinity of a sharp corner, the reference line is a circular arc 
with the radius yb. This arc extends from x ~ , ~ ~ ~ ,  the value of x on the perpendicular 
to the upstream surface at the corner,  to x ~ , ~ ~ ,  the value of x on the perpendicular 
to  the downstream surface. 
some integral multiple N of the mesh spacing Ax. The magnitude of Ax is related 
to the number N, the radius of curvature of the body segment Rb, and the a r c  length of 
the body segment S by the equation 

The length of each segment of the reference line must be 

If the c r o s s  section of the body is circular,  the reference line can be constructed with a 
single segment, and the quantities N, S, Rb, and yb can be chosen independently. 
For bodies with two segments with different values of S and Rb, the numbers N1 
and N2 of mesh spacings Ax which compose the respective reference line segments 
can be chosen independently, but both se t s  of quantities S, Rb, and N must satisfy the 
equation for Ax. This condition is met if the distance yb satisfies the equation 

- '1 %,1+ yb - - -  '2 %,2 + yb 
N1 Rb,l N2 Rb,2 

When the body is constructed of three or more segments, the choice of N, 
for  each segment is not arbitrary.  

S, and Rb 

The governing partial differential equations for inviscid axisymmetric and two- 
dimensional flow can be written in divergence form in t e r m s  of the coordinates x and y 
andthe time t as 

a q  aBi aci 
a t  ax ay 
- + -+ -+ Di = 0 (i = 1,2,3,4) (4) 
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In equation (4), the subscript 1 denotes the continuity equation, the subscripts 2 
and 3 denote the tangential and normal momentum equations, respectively, and the 
subscript 4 denotes the energy equation. The quantities 4, Bi, Ci, and Di are 
written as follows: 

A1 = P h  

= PUh, 

A3 = PVA, 

A4 = (PH - PIAX 

B1 = (1 + p.j)pu 

B2 = p + (1 + pj)pu2 

B3 = (1 + pj)puv 

B4 = (1 + pj)puH 

c1 = pvx, 

c 2  = puvx, 

c 3  = ( P  f PU2)X, 

C4 = ~vHX, 

D - j (1  - p)puA, cos F+ e jpvf 1 -  

D~ = j ( 1  - p)pu 2 A, cos  :+ p U v ( ~ ,  + j f )  

D3 = j ( l  - p)puvX, cos  - e + jpv2f - ( p  + pu2)Kr 

D4 = j ( 1  - p)puHA, cos  r +  e jpvHf 

r 

(5) 
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where p, p, y, and H are the pressure, density, ratio of specific heats, and total 
enthalpy, respectively. The quantities j, p ,  and f depend on the geometry and are 
given by the equations 

and 

(Two -dimensional flow) 

(Axisymmetric flow) 

(On the axis) 

(Off the axis) 

(On the axis) 

(off the axis) 

(7) 

In order  to prevent the bow shock from cutting across  the grid lines, the 
y-coordinate is normalized with the local shock layer thickness 
The normalized coordinate Y, which is given by the equation 

6 as shown in figure 2. 

has the values of zero at the body surface and 1 at the shock wave. The partial deriva- 
tives with respect to the old independent variables t, x, and y are related to  the 
partial derivatives with respect to the new variables T = t, X = x, and Y = y by the 
expressions: 

a - a  ~ 6 a  
a t  a 7  6 aY 
_ _ - - - -  

a a ~ 6 '  a 
ax ax 6 aY 
- = - - - -  

where b and 6' a r e  the derivatives of 6 with respect to T and X, respectively. 
Equation (4) can be written in t e r m s  of T, X, and Y as 
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There are several advantages to  using the governing equations in this particular 
conservation form.  In the first place, it improves the resu l t s  at gr id  points adjacent to 
sharp corners  because the quantities Ci - Y 
that the derivatives of these quantities with respect to Y in equation (10) are well- 
behaved at these points although the individual properties have large Y-derivatives there. 
This condition is true because the reference line subtending the corner  is a circular a r c  

with the curvature Kr = - s o  that the scale factor X, satisfies the equation 

+ Bi6') are proportional to Y so ( 

yb 

6 
yb 

A,= -Y 

and the following relationship holds: 

ci - 

In the second place, the conservation form permits the calculation of flow fields con- 
taining embedded shock waves, no special consideration being given to computations in 
the vicinity of those waves. 

A two-step Lax-Wendroff finite-difference method is used to obtain solutions of 
second-order accuracy at points between the shock wave and body surface. The first 
step of the calculation is the determination of a solution of f i rs t -order  accuracy in the 
mesh spacing AT, Ax, and AY at the new time T f rom the known solution at time 
T - AT, whereas the second step is the correction of the solution at time 
order  accuracy. Let k, Z, and m be the indices for the t ime T and the coordinates 
X and Y, respectively. The f i rs t -order  solution at t ime T is obtained with the 
equations 

T t o  second- 

+ ( q y  + (q)k-l 
Z,m-1 Z+l,m 

k-1 

I ,  
+ AT($) (i = 1,2,3,4) 

where values for the partial derivatives a A i / a ~  at the point (k - 1, I ,  m) are determined 
by evaluating the right-hand side of equation (10) at this point. The partial derivatives 
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I 

with respect to X and Y in equations (10) are approximated with central difference 
formulas. Once the quantities Ai are known, the flow properties p, p, u, and v 
can be determined. It should be noted that the scale factor A,, and hence the shock 
layer thickness 6 at t ime r, is needed in order  t o  determine the density f rom the 
known value of A1. It is for this reason that for  each new time step, the solutions at 
points on the bow shock wave are determined before the solutions at points between the 
shock and body. 

The second-order solution at time r is obtained with the equations. 

- K  LAX). k-1 

(2)z,m + (AY)4 (i = 1,2,3,4) (12) 

where the values for the partial derivatives 8 4 / 3 7  at the point (k, I, m) are deter- 
mined by evaluating the right-hand side of equation (10) at this point with the first-order 
solution just obtained. The t e r m s  of fourth order  in equations (12) are not physical and 
are added to  eliminate instabilities. 

The von Neumann conditions provide a means of estimating the upper bound of the 
time step AT which can be used with a given set of finite-difference equations. It is 
shown in appendix A that, in t e r m s  of the velocity components u and v and the non- 
orthogonal coordinates X and Y used in this paper, this condition can be written as 

where a is the local speed of sound. In practice, it has  been found that this inequality 
can be replaced by a simpler expression of the form 
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. . . . . . .. . . . .. . - - . . . . . . . 
I -- 

- 
where Vmax,.o = dx is the maximum speed in the free stream. It is also shown in 
appendix A that the damping coefficient K in equation (12) must satisfy the inequalities 

1 
32 O < K Z -  (15) 

Calculations at Points on Bow Shock Wave 

As in reference 16, a time-dependent method of characteristics is employed at the 
shock wave and body surface. The present method differs from that of reference 16 in  
that the characteristic compatibility relation is integrated along a bicharacteristic ra ther  
than along a quasi-one-dimensional characteristic. A general discussion of the t ime- 
dependent method of character is t ics  for two-dimensional flow can be found in 
reference 18. 

An orthogonal curvilinear coordinate system q, ( is established at the shock wave 
as shown in figure 3, where q and [ a r e  the distances along and normal to the shock, 
respectively, at t ime T .  The velocity components in the q- and (-directions are U 
and V, respectively. The angle u between the normals t o  the shock wave and the 
reference line satisfies the relation 

6' tan u =  - 
Ax 

The basic problem is to determine the solution for the flow properties and the 
shock speed at points on the shock at t ime T from the known solution at T - AT. The 
equations which a r e  solved at points on the shock wave are the Rankine-Hugoniot rela- 
tions and one characteristic compatibility relation. If the subscripts Q) and s denote 
the quantities in the f r ee  s t ream and immediately behind the shock, respectively, the 
Rankine-Hugoniot relations can be written as 

p S ( v s  - sec u 6 )  = p,(v, - sec a 6 )  

ps + p S ( v s  - sec a i)2 = p, + p,(v, - sec u 6) 2 

- 2  p, 1 + %(v, - sec u il2 -- + -(vS - sec u 6 )  = 2- y PS 1 
Y - l P s  2 Y - l P ,  

us = u, J 



The characteristic compatibility relation is written as 

+ pa2V(Ks + jg) - KspaU2] 

where d/dT is the substantial derivative, j and p are given by equations (6) 
and (7), respectively, and g is given by the equation 

(On the axis) 

(Off the axis) 

The quantities p, K,, and Xq in equation (18) are the angle between the normal to the 
shock wave and the free-stream direction, the curvature of the shock, and the scale 
factor for the q-coordinate, respectively, and are given by the equations 

The compatibility relation (18) is integrated from a point between the shock and body at 
t ime T - AT to  the point on the shock at time T along the bicharacteristic which satis- 
fies the differential equations 

The equation thus obtained gives a linear relationship between the pressure ps and the 

velocity component normal to the shock Vs. 
relations (17) are solved simultaneously to determine values for  the flow properties ps, 

at time T. 

This equation and the Rankine-Hugoniot 

Us, and V, and the component of the shock velocity normal to the reference line 6 
PS,  
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The following procedure is used to obtain solutions at the bow shock. First, a 
tentative value for S(q,r), the location of the shock wave at t ime r, is obtained from 
the equation 

~ ( v , T )  = ~ ( v , T  - AT) + AT &,T - AT)  

at all points on the shock wave, the derivative 6'(q7r)  is determined geometrically, and 
the angle (J is evaluated with equation (16). Then it is assumed that 6(q,r) = 6(q,r - AT),  
and an initial solution for  p,, ps, Us, and Vs at t ime r is obtained from equa- 
tions (17). 

The point A where the bicharacteristic through the shock point s intersects 
the plane r - AT is determined by iteration. In order  to accomplish this iteration, 
equations (20) are approximated by the finite -difference expressions 

Initially, it is assumed that the properties at A have the same values as those at s. 
These values are substituted into equations (21) and a first estimate for the location 
of A is obtained. Improved values for UA, VA, and aA are determined by inter- 
polating the known solution at t ime 7 - AT and a r e  used in equations (21) to obtain a 
second estimate of the location of point A. This process is repeated until the resu l t s  
f o r  the location of point A converge. 

When point A has been located, the compatibility relation (18) is integrated from 
A to s along the bicharacteristic. In order  to perform this integration, the right- 
hand side of equation (18) and the coefficient pa on the left-hand side are evaluated at 
s and A, and the results are averaged. The integrated compatibility equation and the 
Rankine-Hugoniot relations (17) are solved simultaneously for improved values of the 
quantities p,, p,, Us, V,, and d at time r, and a second approximation for the 
shock location is determined with the equation 

Once the improved solution has  been obtained at all points on the shock wave, new esti- 
mates  of the derivative S'(q,r) and the shock angle CT are determined for each point. 
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In general, the second set of values for the flow properties and shock velocity and 
location at t ime T differ slightly f rom the first set. Converged results are obtained 
by repeating the process described several times, beginning with the location of the 
point A, and continuing until the next set of improved values for the flow properties and 
shock wave parameters  have been determined. 

Calculations at Points on the Body Surface 

The basic x,y coordinate system shown in figure 1 is used in connection with the 
time t at points on the body surface. Therefore, the governing partial differential 
equations a r e  given by equations (4). These equations a r e  combined linearly to obtain 
characteristic compatibility relations which are used in conjunction with the boundary 
condition 

v = o  

t o  obtain solutions for the flow properties at the body surface. The pressure can be 
determined with the relation 

where j ,  p, and f a r e  given by equations ( 6 ) ,  (7), and (8), respectively. Equa- 
tion (22) is integrated along the bicharacteristic which satisfies the differential 
relations 

The density is determined with the compatibility solution 

which is integrated along the streamline which wets the body surface. This streamline 
has the slope 

16 
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i n  the x,t surface. 
Bernoulli equation 

dH 1 9  - - -  
dt p a t  

The surface velocity is determined either f rom the transient 

= o  

which is integrated along the surface streamline or by the compatibility relation 

which is integrated along the bicharacteristic in the x,t surface with the slope 

d x - u + a  
dt Ax 
--- 

An iterative procedure is used to determine the solution at the body surface at 
t ime t which is similar to that employed a t  the shock wave. For each cycle of the 
iteration, values for the flow properties are determined at all the points on the body su r -  
face. The iteration is continued until the solutions for successive cycles of the iteration 
converge. In order  to  start the first cycle, the values of the flow properties at time t 
are set equal t o  the known values at time t - At. 

The basic procedure which is employed at the body surface consists of using equa- 
tions (22), (24), and (26) or (27) to determine the pressure p, the density p, and the 
tangential velocity component u, respectively. This procedure is used to determine the 
solution for all values of x for which the surface is continuous and for  x = %,min 
if the flow approaching the corner is supersonic. 

The location of point A, where the bicharacteristic through the body point b at 
time t satisfies the differential relationships (23) and intersects the surface t - At, 
is determined iteratively in the same manner that was used at the shock wave. The 
compatibility relation (22) is integrated from A to  b to  determine the pressure b. 
Then the intersection point B of the surface t - At and the streamline bicharacteristic 
through b, which satisfies equation (25), is determined and equation (24) is integrated 
from B to b to obtain the density pb. At this stage either equation (26) or  equa- 
tion (27) is integrated to determine the tangential velocity ub. It should be noted that at 
the axis of symmetry, the condition Ub = 0 is imposed. When the transient Bernoulli 
equation (26) is used, the partial derivative 8p/at is evaluated explicitly. If the x- 
and t-coordinates of the points D and b are denoted by xD, t - At, and xb, t, 
respectively, the finite-difference expression f o r  this derivative is written as 

17 



a t  2 At  A t  

The density p in  equation (26) is approximated with the average of the densities at the 
points D and b. 

If the flow approaching a sharp corner on the body contour is subsonic, an alternate 
procedure is used to determine the solution at the corner  for x = +,min. This proce- 
dure consists of simultaneously solving the integrated energy equation (24) and either the 
integrated transient Bernoulli equation (26) o r  the integrated compatibility equation (27) 
subject t o  the sonic condition u = a. 

It is shown in appendix B that the solution at the corner  for 

XC,min 5 x  s x  c , max 

is the transient analog to the Prandtl-Meyer solution, which is given by equations (B5) 
and (B6). 

Initial and Boundary Conditions 

A complete initial solution can be constructed from a specified shock shape and 
surface pressure  distribution, both of which can be very approximate. In this paper, the 
initial shock shape is a conic section, and the surface pressure  distribution for smooth 
bodies is the Newtonian distribution. If the body has  a sharp corner  where the flow is 
sonic, an empirical distribution with a singularity at the corner  is used. It is assumed 
that the initial shock velocity is zero so that the flow properties at the shock wave can be 
determined completely with the Rankine-Hugoniot relations and the approximate shock 
shape. The density and tangential velocity at  the surface a r e  determined with the approx- 
imate surface pressure  and the principles of conservation of surface entropy and total 
enthalpy. The initial properties at  points between the body and shock a r e  obtained by 
interpolating linearly between the body and shock along normals to the body surface. 

As discussed previously, the boundary conditions applied at the shock and body are 
the Rankine -Hugoniot relations for a moving shock and the flow -tangency condition, 
respectively. The boundary condition at the axis of symmetry is that the tangential 
velocity vanish there. The flow properties at the downstream boundary are determined 
by extrapolation. If this boundary is located in a region where the flow is supersonic, the 
e r r o r s  incurred by the extrapolation do not propagate back upstream and hence do not 
influence the calculation appreciably. 

18 



RESULTS AND DISCUSSION 

All the resul ts  which are presented are for  a perfect gas  with a ratio of specific 
heats of 7/5 and for  axisymmetric bodies at zero angle of attack. Unless otherwise 
specified, the free stream is uniform. When it is feasible, the pressure distributions 
are normalized with the quantity p,vt instead of the stagnation pressure so that the 
calculated value of the stagnation pressure can be presented. Solutions are presented 
in detail for several cases and are compared with experimental and other theoretical 
resul ts  in order  to demonstrate the accuracy of the method. In addition, resul ts  are 
presented for flow fields with nonuniform distributions of the free -stream properties 
and flow fields with overexpansion and recompression regions. 

Sample Calculations 

Results are presented for the flow fields about two flat-face cylinders, one with a 
rounded corner and the other with a sharp corner, and a blunted cone with a sharp corner.  
For each of the flat-face cylinders, detailed comparisons are made between experimental 
resul ts  and the result  of two calculations with different mesh spacings. In the case of the 
blunted cone, comparisons are made between experimental resul ts  and the results of the 
present and other methods. 

Flat-face cylinder with rounded corner.- The ratio of the radius of the corner to  
the base radius is 0.4, and the free-stream Mach number is 2.49. The shock-wave and 
sonic-line locations are shown in figure 4, the surface pressures  and velocity distribu- 
tions are given in figure 5, and flow property profiles along several normals to  the body 
surface are presented in figure 6. The results for solution 1 of the present method 
depicted in figures 4, 5, and 6 were calculated with a grid with 21 mesh spacings in the 
X-direction and 6 in the Y-direction. The results for solution 2 were calculated with a 
grid with 14 and 4 mesh spacings, respectively, in the X- and Y-directions. 

The experimental data for  the shock-wave location shown in figure 4 were obtained 
coincident with the data presented in reference 18. The experimental data for the pres-  
sure  and velocity were obtained from reference 18 and are depicted in figure 5 with a 
solid line as a function of the distance s along the surface from the axis. The normal 
to  the surface designated as I in figure 6 is coincident with the stagnation streamline, the 
normal designated as II intersects the body on the shoulder and is inclined at an angle 
of 30' to the free-stream direction, and the one designated as III intersects the body at 
the junction of the shoulder and the afterbody. 

Flat-face cylinder with sharp corner.-  The Mach number fo r  this case is 2.81. The 
shock-wave and sonic-line shapes are shown in figure 7, the surface pressure and velocity 
distributions are given in figure 8, and the flow property profiles along the stagnation 
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streamline and the l ines normal to the upstream and downstream portions of the body 
surface at the sharp corner  are presented in figure 9. The experimental data shown in 
figures 7 and 8 were obtained from results given in reference 19. In figure 9, the normal 
t o  the body along the stagnation streamline is designated as I; the normal to the upstream 
face at the corner, where X = Xc,min, is designated as II; and the normal to the down- 
s t ream face at the corner, where X = Xc,max, is designated as 111. 

result  of different mesh spacing sizes. For example, the numerical values for the pres -  
sure  on the face near the corner  are higher than the experimental values, whereas the 
values for the velocity on the face are generally lower than the experimental results.  
Both of these t rends decrease as the size of the mesh spacings is decreased. However, 
it can be seen in figures 8 and 9 that the two solutions have the same singular character  
in the vicinity of the sharp corner .  Note that at a sharp corner, the velocity component v 
shown in figure 9(d) is zero  only where x = xc,min. (See appendix B.) 

Blunted cone with sharp ~ corner.- The half-angle of the cone shown in figure 10 is 
60°, and the nose of the cone is spherically blunted and the ratio of nose radius to base 
radius is 0.25. 

It is seen in figures 7, 8, and 9 that the numerical solutions differ slightly as a 

In figure lO(a), the shape of the bow shock wave, as predicted by the present method 
f o r  a free-s t ream Mach number of 4.63, is compared with that predicted experimental data 
(ref. 20) and by the one-strip method of integral relations (ref. 21). It is seen that the 
resu l t s  of the method of integral relations are in better agreement with experiment than 
the present resu l t s  in the stagnation region. In the vicinity of the sharp corner ,  both 
methods tend to  underestimate the thickness of the shock layer. The results for the su r -  
face pressure distribution are compared with experiment in figure lo@). 
erence 21, the method of integral relations tends to underestimate the pressure on the 
conical part  of the body. It is seen that the present results show good agreement with 
experiment in this region. 

As noted in ref-  

The results of the present method and the method of integral relations for  the shock 
shape and surface pressure distribution for a free-s t ream Mach number of 10 are com- 
pared in figure 11. Also shown in the figure a r e  the resu l t s  of Masson, Taylor, and 
Foster (ref. 12) for a free-s t ream Mach number of 9. As has been mentioned previously, 
the resu l t s  of reference 12 were calculated with the Godunov method, which is a time- 
dependent method of first-order accuracy. Because results for different Mach numbers 
are being compared in figure 11, the pressure distributions are normalized with the 
stagnation-point pressure.  It is seen that the present method predicts that the shock- 
layer thickness is l e s s  than that predicted by the other two methods at all points along 
the body and that the surface pressure is greater  than that predicted by the other methods. 
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The differences in the f ree-s t ream Mach numbers for the resu l t s  shown in this figure do 
not account for the differences in the resu l t s  since the Mach numbers are so large. In 
fact ,  h e  pressure predicted by the Godunov method on the conical part of the body for a 
free-s t ream Mach number of 9 is less than that predicted by the present method for a 
free-s t ream Mach number of either 4.63 or 10. 

It is seen in figures lob) and lib) that the present resu l t s  for the surface pressure 
are irregular just upstream of the corner . .  This irregularity decreases  as the grid is 
refined and is probably related t o  the mesh-spacing size effect observed for the flat-face 
cylinder with the sharp corner .  

Calculations for Nonuniform Free  Stream 

The magnitude of the free-s t ream velocity is assumed to vary parabolically with 
the perpendicular distance from the axis so that flow fields about bodies in a nonuniform 
free s t ream such as that found in some wind tunnels o r  in the wake of a forebody can be 
investigated. The expression for the velocity is written in  the form 

is the magnitude of the free-s t ream velocity at the center line, where v 
base radius of the body, and E 

distance r = 'b from the axis from the value V,,+. It is assumed that the free-s t ream 
pressure and total enthalpy are constant and that the flow in the f r ee  s t ream is parallel 
to the axis. This type of nonuniformity leads to a strong dependence of the dynamic pres -  
su re  on the distance from the center line and becomes more pronounced as the center-line 
Mach number is increased. 

r b  is the 
is the percent deviation of the free-s t ream velocity at a 

*, @ 

The body which is t reated is a spherically blunted cone with a sharp corner, a half - 
angle of SO0, and a nose radius to base radius ratio of 0.25. 
center line is 10. 

The Mach number at the 

Bow shock wave and sonic line shaDes.- The locations of the shock waves and the 
sonic lines resulting from three  nonuniform f ree  s t reams a r e  compared with those for 
the uniform free s t ream in figure 12. It can be seen that the nonuniformity has  a marked 
influence everywhere in the flow field. The general trend as E 

shock wave to move closer  to the body in the stagnation region and further from the body 
in the transonic and supersonic regions. The sonic point at the bow shock moves outward 
away from the axis as E is increased. The results indicate that the sonic point on the 
surface is positioned at the corner  for E = 0, 0.005, and 0.01, but that it is located 
upstream of the corner  for E = 0.03. This  displacement of the sonic point will be dis- 
cussed subsequently. 

is increased is for the 
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Also shown in the figure are the results of the one-strip method of integral rela- 
tions for E = 0.01. The resu l t s  were calculated with a modified form of the method 
described in  reference 21. 

Surface pressure  distribution.- In figure 13, the surface pressure, which is made 

is plotted as a function of the distance along the surface nsndimensional with p,, Q. 03, +, 

f rom the axis. It can be seen that for values of E of 0.005, 0.01, and 0.03, the pressure  
near the corner  (s/rb = 0.8) is reduced by about 10, 20, and 50 percent, respectively. It 
should be noted that these pressure reductions are accompanied by equally severe reduc- 
tions in the free-s t ream Mach number. At a distance r = r b  f rom the axis, for 
E = 0.005, the free-s t ream Mach number is reduced by 9 percent f rom 10 to 9.1; for 
E = 0.01, it is reduced by 16 percent to 8.4; and for E = 0.03, it is reduced by 34 percent 
t o  6.6. 

i;;2 

The results of the one-strip method of integral relations for E = 0.01 are also 
shown in the figure. The close agreement of the resu l t s  of the present method and those 
of the method of integral relations is encouraging in the absence of experimental data on 
the subject. 

The Newtonian pressure distributions are presented in figure 13 for E = 0, 0.01, 
and 0.03. The standard Newtonian equation was  used, but the radial dependence of the 

quantity p,V, w a s  included. The results of the present method for E = 0 and 0.01 
differ considerably from the Newtonian results as expected since the flow is subsonic all 
along the face and is singular at the corner. The Newtonian results for E = 0.03 indicate 
that the sonic point is located on the conical portion of the body upstream of the corner  at  
approximately the same location as the present results. The two se ts  of results a r e  in 
close agreement in the supersonic region. 

-2 

In general, there is a reluctance to accept solutions which indicate that the sonic 
point on the surface of a body in a symmetric inviscid flow field is located on a straight 
segment of the surface. In fact, Nikolskii and Taganov (ref. 22) have proved that for 
plane potential flow such a solution cannot exist and Shifrin (ref. 23) has extended the 
proof to cover symmetric, nonisentropic plane flow. However, it should be noted that 
this proof does not apply directly to axisymmetric flow. 

It is possible that the truncation e r r o r  of the present method is responsible for the 
displacement of the sonic point upstream of the corner  for the case E = 0.03 since this 
e r r o r  is viscous-like. However, it is also possible that the present results represent 
the inviscid flow correctly, and that the displacement occurs  because the dynamic pres -  
sure  at points off the axis for E = 0.03 becomes too small to support subsonic flow at 
the surface all the way to the corner .  
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Calculations for Overexpansion- Rec ompre ssion Flow Fields 

The bodies about which flow is calculated in this section are truncated cones with 
rounded shoulders between the face and conical afterbody. The flow overexpands around 
this shoulder and recompresses  because of the presence of the afterbody. The recom- 
pression starts as a continuous compression on the surface of the afterbody just down- 
s t ream of the shoulder. Experiments (refs. 19 and 24) show that if the flow h a s  expanded 
to  the supersonic state, the Mach lines in the compression region may converge so that 
an embedded shock wave is formed between the surface of the afterbody and the bow shock 
wave. 

Comparisons with experiment and another theoretical method. - The free-stream 
Mach number is 1.79, and the configuration about which the flow is calculated is body 2 
of reference 23. The half-angle of the conical afterbody of this configuration is 30°, and 
the ratios a/rb and rc/’b are 0.344 and 0.2, respectively. The resul ts  of the present 
method, the one-strip method of integral relations by Traugott (ref. 25), and the experi- 
mental dataof Hastings, Persh,  and Redman (ref. 24) for the shock wave and sonic line 
locations, and the surface pressure distribution are shown in figures 14 and 15. The 
pressure distribution in figure 15 is normalized with the stagnation value because an 
experimental value for the stagnation pressure is not given in reference 24. 

~~ 

The shadowgraph of this flow field indicates that there is a weak embedded shock 
wave in the recompression region over the afterbody. The present resul ts  for the dis- 
tributions of pressure in this region along the l ines Y = Constant are shown in figure 16. 
The abscissa is the distance from the upstream edge of the conical afterbody. These 
resul ts  indicate that the flow is being compressed, but the relative magnitude of the pres-  
su re  increase is small and decreases as the distance from the surface is increased. The 
points where the experimentally observed shock wave c rosses  the lines Y = Constant, 
which are plotted on the figure, are located where the pressure gradient is relatively 
large. 

free-stream Mach number on the structure of the shock layer about a 45’ truncated cone 
with rounded shoulders is shown in figure 17. The relative magnitudes of the radius of 
the flat face, the corner radius, the length of the conical surface, and the base radius are 
1, 0.25, 2, and 1.664, respectively. The cone is followed by a cylindrical afterbody. 
Results are presented fo r  Mach numbers of a, 2.8, 2.6, 2.4, and 2.0. 

Effect of Mach number on shock-wave and sonic-line locations.- The influence of the -~ ~ 

Also shown in the figure are resul ts  for the flat-face cylinder with the same value 
of the ratio rc/a as the truncated cone-cylinder. Comparisons of the resul ts  for the 
two bodies show the influence of the conical portion of the truncated eone-cylinder on the 
flow field. 
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For a free-stream Mach number of infinity, the sonic line and bow shock wave in 
the .nose regions of the two bodies coincide. Thus, the flow field ahead of the first 
shoulder of the truncated cone-cylinder is not influenced by the presence of the conical 
portion of the body. The flow expands around the first shoulder and becomes supersonic. 
It then compresses on the conical part  of the body and becomes subsonic. At the second 
shoulder, it again expands t o  the supersonic state. Qualitatively, the structure of the 
shock layer for a free-s t ream Mach number of 2.8 is essentially the same as that for 
M, = m. However, when M, = 2.8, the relative size of the subsonic region over the 
conical part  of the body is much larger.  

The regions of subsonic flow are connected for  a Mach number of 2.6; thus, the 
flow in the stagnation region is influenced by the presence of the afterbody. However, 
this influence is so  slight that the locations of the bow shock wave in the nose regions of 
the truncated cone and flat face cylinder are essentially the same. It should be noted 
that a bubble of supersonic flow remains at the first shoulder. 

When the Mach number is 2.4, the zone of subsonic flow over the conical portion of 
the body enlarges so that it extends all the way to the bow shock wave. There are two 
isolated regions of supersonic flow at this Mach number: 
the first shoulder, and one on the first shoulder. 
little influence on the flow in the stagnation region; thus, the shock-detachment distances 
for the truncated cone and the flat cylinder are the same. 

one a t  the bow shock wave above 
The conical par t  of the body still has 

For a Mach number of 2, the flow field upstream of the second shoulder is subsonic 
with the exception of the supersonic bubble at the first shoulder. It is seen that at this 
Mach number the entire subsonic region is affected noticeably by the presence of the 
conical surf ace. 

It should be noted that'for y = 1.4, the weak shock solution for flow over a pointed 
45' cone with the shock attached at the apex predicts that the flow at all points in the 
shock layer is supersonic when the Mach number is infinity and 2.8, and subsonic when 
the Mach number is 2.6 and 2.4. No attached-shock solution exists for a 45' cone when 
y =  1.4 and M,= 2. 

The compression which occurs over the conical part  of the truncated cone s t a r t s  on 
a continuous compression at the first shoulder. At higher free-stream Mach numbers, 
the compression fan probably merges to become a weak embedded shock wave which 
intersects the bow shock wave. On the basis of the present results, it cannot be deter-  
mined whether the embedded shock forms since the present method smears  weak shocks 
so that they cannot be distinguished from continuous compressions. It is clear that the 
continuous compression extends all the way to  the bow shock wave for  M, = 2 because 
the flow is subsonic throughout the recompression region. 
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Effect of Mach number on surface pressure distribution.- In figure 18, the surface 
pressure distributions, which have been nondimensionalized with the stagnation pressure, 
are plotted as a function of distance along the surface from the axis for the five values 
of M,. The stagnation-point pressure pt rather than the quantity p,v: is used for 
normalization because it leads to  a better overall correlation of the results. The sonic 
pressure  level and the values of the surface pressure fo r  a pointed 45' cone with the 
shock attached at the apex are shown also. As noted before, no attached-shock solution 

~ - _ _ ~  

exists when M, = 2. 

It is seen that the resu l t s  correlate  very wel l  in the stagnation region. On the first 
shoulder a Mach number effect appears which becomes very pronounced on the conical 
part of the body. This effect is monotonic, the higher nondimensional pressures  cor re-  
sponding to the lower Mach numbers. Note that the distribution for M, = 2 appears to 
provide an upper bound for the other distributions on the rear part  of the conical surface, 
and that the other distributions tend to approach the surface pressure  value for the 
pointed 45' cone at the appropriate Mach number. Mach number effects a r e  observed on 
the downstream part of the second shoulder but they a r e  small. 

CONCLUDING REMARKS 

A time-dependent numerical method is presented for calculating supersonic blunt- 
body flow fields with sharp corners  and embedded shock waves. Both axisymmetric and 
symmetric plane bodies can be treated. The method of characterist ics for transient flow 
w a s  used at the bow shock wave and body surface, and a two-step finite-difference method 
of second-order accuracy which employs a shock and body-oriented coordinate system is 
used between the bow shock and body surface. Exact closed form expressions a r e  used 
to  determine the multiple-valued solutions at the sharp corners .  A stability analysis of 
the finite -difference equations which accounts for the effect of the nonorthogonal coordi- 
nate system is presented. 

Some results for bodies with both sharp and rounded co rne r s  were compared with 
experimental data and other theoretical results to establish the accuracy of the method. 

The method w a s  used to investigate the effect of a parabolic f ree-s t ream velocity 
distribution on the flow field about a 60' blunted cone with a sharp corner  and a ratio of 
nose radius to base radius of 0.25. It w a s  found that this nonuniformity tended to  decrease 
the thickness of the shock layer adjacent to the blunted nose and increase the thickness 
adjacent to the conical surface. In addition, it w a s  shown that increasing the nonuniformity 
caused a large decrease in the pressure  on the conical part of the body. 

A study of the effect of f ree-s t ream Mach number on the flow about a 45' truncated 
cone-cylinder with rounded corners  was also made. It w a s  found that for f ree-s t ream 
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Mach numbers between 2 and infinity, the flow overexpanded to the supersonic state on 
the corner  between the face and the conical surface and then recompressed on the conical 
surface. For Mach numbers of 2.4 and higher, the pressure  on the conical surface 
approached the value for similar flow over a pointed cone. It should be noted that s imilar  
flow does not exist for a pointed 45' cone for f ree-s t ream Mach numbers much below 2.4. 
It was found that the pressure distribution on the conical afterbody for  M, = 2, when 
normalized with the stagnation value, se rves  as an upper bound for the normalized distri-  
bution for the larger f ree-s t ream Mach numbers. For free-s t ream Mach numbers of 2.4 
and above, the bow-shock-wave location in the stagnation region is not influenced appre- 
ciably by the presence of the c o n i d  part of the body. 

. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., September 9, 1970. 
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APPENDIX A 

STABILITY ANALYSIS FOR FINITE -DIFFERENCE EQUATIONS 

In this appendix, the von Neumann condition for  the linearized form of the present 
difference equations is determined. 
mesh spacing A7 above which it may be expected that the magnitude of a given infini- 
tesimal e r r o r  will increase at successive time steps. In general, difference schemes 
which amplify small e r r o r s  produce solutions which either diverge o r  contain large 
e r r o r s .  

This condition specifies an upper bound for  the 

. 

The basic procedure used in this paper to determine the von Neumann condition is 
given by Richtmyer (ref. 26). A technique employed by Van Leer  (ref. 27) is used to  
account for the difference in the mesh spacing s izes  for  the X- and Y-coordinates. A 
nonphysical dissipation function of fourth order similar to  that used by Richtmyer and 
Morton (ref. 28) is employed to avoid neutral stability at points where the components of 
velocity vanish or are sonic. This treatment accounts for  the nonorthogonal nature of 
the X,Y coordinate system. 

The differential equations (10) can be written in matrix form as 

where thevec to r s  w and D and the matrices B and C are written as 

0 

U 

0 

pa2 

0 

l:i U 
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II I l l  

C =  

D =  

I I I  I 1111IIIIIIlIllI..I. I I I I I I I .I, I I.._... . . -_.-._ _....-- ~~ 

I 

APPENDIX A - Continued 

0 0 

Y6'pa2 0 
Ax 

jpu COS e 
r 

The expanded forms of the finite-difference equations (11) and (12) are 

4 
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APPENDIX A - Continued 

and 

t 

respectively. In this appendix it shall be assumed that the 
evaluated at the point (k - 1, 2, m). 

+ W ~ , m - 2  k-l ,3 
matrices B and C are 

Let the small e r r o r s  be represented by a series of t e r m s  of the form 

where 

g = exp(6 AT) 

- 27r (=-Ax 
Lx 

q = - A Y  2n 
5r 

The quantities L, and Ly are the wavelengths of the e r r o r  solutions in the X- and 
Y-directions, respectively, and define the quantities A, rl, and r2 as 

1 A7\/(Xx Ax)2 + (6 AY)2 
A =  

(A, Ax) (6 AY) 

1 AT r -- l = R X , A X  
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APPENDIX A - Continued 

The solution at t ime T in t e r m s  of that at T - AT for a small  t ime step AT is 
obtained by substituting equation (A5) into equations (A3) and (A4) and taking the limit 
as AT approaches ze ro  so that the quantities AT D in  equations (A3) and (A4) vanish. 
This solution is written as 

w(X,Y,T) = GW@,Y,T - AT) (447) 

where the matrix G is given by the equation 

- 1. 2 A2(r1B sin $ + r2C sin ij )2 
1 (A8) 1 

4 
- i -(2 + cos 2 + cos  3) A(rlB sin E + r2C sin e 

Equation (A8) is the amplification matrix for the difference scheme given by equations (A3) 
and (A4). 

The solutions at t imes  r and T - AT are related also by the equation 

It can be seen from equation (A9) that the magnitude of the solution at  t ime r is less 
than that at t ime r - AT; hence, the solution satisfies the von Neumann condition for 
stability if the magnitude of g is less than one. 

It can be shown by combining equations (A7) and (A9) that g represents  the eigen- 
values of the matrix G: 

(G - Ig)W = 0 (A1 0) 
+ 

The quantity I is the identity matrix. An expression fo r  g can be obtained from the 
secular equation for equation (A10): 

Let the matrix E and the quantities cos  cp and 6 be defined as 

E = r lB  sin 2 + r2C sin f 
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APPENDIX A - Continued 

r1 sin 4 - r2 sin q ~6 A, 
cos  (D = -(  Y 1 

and 

N u = u cos  cp + (v - Y6)sin cp (A141 

C 

Therefore, the matrix E can be written as 

cos  cp/P 

sin cp/P 

Ti O! 

p sin cp 
u 

U 0 

0 U 
N 

pa 2 cos cp pa2 sin cp 

(A151 

E = J f l  sin g - r sin y ( Y b ' / A x ~  2 2  + r2 sin2ij 
2 

The eigenvalues of this matrix are 

e = Jpl sin E - r2 sin ij(Y6~/~,)1 + r2 2 sin 2 - -  q e 

where E represents  one of the values ?i, Ti + a, or 5 - a. The value is doubly 
degenerate. Equations (A8), (All) ,  (A15), and (A16) can be combined to yield the fol- 
lowing expression for  the eigenvalues of the matrix G :  

(A17) - cos  E ) 2  + (1 - cos  i j )  + cos  5 + cos  y)Ae 

The magnitudes of the eigenvalues g are given by the equation 

1 2 2 2 1  + --(2 + cos  E +  c o s y )  2 A 2 2  e 
1gI2= (1 - 2 A  e ) 16 

+ 4 ~ L l  - cos  + (1 - cos  i j ) z ]  ( 4 ~ k 1  - cos  E ) 2  + (1 - c o s  jj)l - 2 + e 2 A g  (A18) 

Equation (A18) can be used to determine the minimum upper bound for AT which 
satisfies the von Neumann condition for stability. In order  that the damping t e r m s  (the 
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APPENDIXA - Continued 

t e rms  which a r e  proportional to the damping coefficient K) will not increase the magni- 
tude of g, it is necessary that K not be negative and that the following inequality holds: 

4 ~ [ 1  - cos + (1 - c o s f l ) ~  - 2 + e 2 2  A < 0 

When this inequality is combined with the Courant-Friedrichs Lewy stability condition 
(e2A2 2 l ) ,  an upper bound of 1/32 is obtained for K .  If the damping coefficient K 

satisfies the inequalities 

0 I K I 1/32 

equation (A17) can be replaced by the inequality 

1 2 2  

2 5 + COS ij) + (cos 4 + COS q )  - 3 A e 

+ - 1 4 4  A e + 4 ~ k 1  - cos + (1 - cos7j)g(A2e2 - 1)  
4 

The inequalities 

(cos 5 + cos $2 z 2 ( c o s q  + C O S 4 j )  

cos 5 + COST/ 5 2 

sin2g + sin% i 2 

can be used to establish an upper bound for the right-hand side of inequality (A19). The 
resulting inequality can be written as 

lgl 2 2 1 + A(h2e2 4 + 1 6 ~ E l  - cos + (1 -  COS^)^]} k 2 e 2  - $(sin2t + sin%! (A20) 

Since the quantity 

magnitude of g is less than one only when the following inequality is satisfied: 

- cos g)2 + (1 - cos7j) is positive definite, the 

A2e2 5 i ( s in2 f  + sin%) 
2 
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APPENDIX A - Continued 

From equation (A16) it follows that 
c 

where 

Ernax = 1fi1+ a 

The quantity cos + is defined so that b 

t lsin Z J  cos + =  i- 
The inequalities (A21) and (A22) and equation (A23) can be combined to yield the 
inequality 

+ r2 sin 1c/ e max 2A2e2 5 2A2 cos @ +  
AX 

__ 
sin2E + sin% 

With this inequality and the definitions of A, rl, r2, and E given in equations (A6) 
and (A14), it  can be shown that AT must satisfy the following condition if  the 
von Neumann stability criterion is to be observed: 

____ - 

I - G i L A X Y  + (6 

2(Ax AX)(6  AY) 

(Ax AX)  (6 AY) 
- - _  

A 7  5 4 (Ax A X F  - + (6 AY)2 _ _ ~  - _ _ ~ _  

(A251 

1 

+ 

The smallest  value of the right-hand side of this inequality which occurs anywhere in the 
flow field at a given time step constitutes the least upper bound fo r  AT for that partic- 
ular  time step. It can be seen that the magnitude of the right-hand side of inequality (A25) 
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APPENDIX A - Continued 

diminishes when the shock slope 6' becomes large (in other words, when the 
X,Y coordinate system becomes skewed). However, there is a compensating effect 
since the scale factor Ax and the shock-layer thickness 6 are generally large in  
regions where the coordinate system is skewed. 

F o r  the calculations which are presented in this paper, it has been found that the 
least upper bound is located generally in regions where the scale factor 
shock-layer thickness 6 are small  ra ther  than in regions where the shock slope 6' 
is large. Since only convex bodies are treated in this paper, the smallest  value of 

case of bodies with sharp corners, the smallest pertinent value of occurs on the 
line Y = A Y  where it subtends the corner. In general, the shock-layer thickness 6 
either attains or approaches its smallest value at the axis of symmetry. Therefore, the 
mesh spacings Ax AX and 6 A Y  either approach o r  attain their smallest  values on o r  
near the stagnation streamline. 

A, or  the 

X, 
In the 

4 
( occurs on the body surface at the segment with the smallest  radius of curvature. 

I .  

A, 
t 

The right-hand side of inequality (A25) can be simplified considerably when it is 
applied on the stagnation streamline since 6' = 0 on the axis of symmetry and Y = 0 
on the body surface. The expression for  the upper bound of AT which can be used on 
the stagnation streamline is 

Since the shock speed is generally much smaller than the magnitude of the velocity, the 
term in inequality (A26) which is proportional to d 
poses. Thus, the least  upper bound for AT is determined from the smallest  value of 
the mesh spacings X, AX and 6 A Y  and the largest  value of the sum v + a, where 
V is the total magnitude of the velocity. By using Bernoulli's equation, this sum can 
be written as 

can be neglected for practical pur- 

- 

It can be shown that the maximum value of v 
enthalpy H is 

+ a for a given value of the total 
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APPENDIX A - Concluded 

Since the total enthalpy does not change much during the course of a time-dependent 
calculation, the value of vmax in the undisturbed free s t ream can be used safely in 
equation (A28). 
is obtained for the least upper bound of AT: 

From the inequality (A26) and equation (A28), the following expression. 

The effect of the damping t e rms  in equation (A17) is to prevent the finite-difference 
equations from becoming neutrally stable when one o r  more of the eigenvalues e vanish. 
Neutral stability occurs when the eigenvalue g has a magnitude of 1 (lgl  = I). If the 
finite-difference equations are neutrally stable in t e rms  of a linear analysis, it is quite 
possible that the nonlinear effects which have been neglected in the linear analysis will 
be sufficient to render the calculation unstable. It is seen from equations (A14) and 
(A16) that an eigenvalue e can vanish whenever one of the components u o r  (v - Yd) 
vanishes o r  becomes sonic. 

It can be seen from equation (A17) that maximum damping occurs for Lx = 2 AX 
and L = 2 AY although solutions with wavelengths of DNO mesh spacings a r e  not 
observable. It is also seen that the damping decreases monotonically as the wavelengths 
of the disturbances increase. Therefore, the effect of the damping terms is to decrease 
the amplitude of short  waves and to have very little influence on long waves. This is the 
desired effect since the physical solution being sought is generally characterized by 
wavelengths much longer than the mesh spacings being used, and solutions with wave- 
lengths of only a few mesh spacings a r e  generally unwanted disturbances. 

Y 
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APPENDIX B 

PRANDTL-MEYER SOLUTION FOR THE TRANSIENT FLOW 

AT A SHARP CORNER 

In this appendix, the solution for compressible, time-dependent flow at a sharp 
corner is presented. It is shown that this solution is multiple valued and satisfies the 
Prandtl-Meyer equations. It should be emphasized that the solution is applicable only 
a t  the corner and is not valid in general in any neighborhood of the corner. 

When a perfect gas is being treated, equations (4) can be written as 
% 

aP u aP aP P au + p z +  jpu COS e 
at A, ax ay A, ax ay 
-+-- + v - + -- 

K - au + - - + v - + -  u au au 1 * + . L u v = o  
a t  A, ax ay PA, ax A, 

It should be noted that the curvature of that pa r t  of the reference line which subtends the 
corner is 

Let x ~ , ~ ~  and ~ ~ , ~ i ~  be the maximum and minimum values, respectively, of the 
coordinate x associated with the corner. If the angle 8 for x ~ , ~ ~ ~  is denoted 
by e,, then the function 8(x) can be written a s  

X - Xc,min 

yb 
e =  e,+ 

Let a new independent variable R be defined such that for x ~ , ~ ~ ~  = x 5 x c, max- 
4 
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APPENDIX B - Continued 

This coordinate is measured from the corner along lines perpendicular to the reference 
surface. It should be noted that h, and r are written in t e r m s  of R and 0 as 

r = rb + R s in  0 

where 
Equations (Bl) are written in t e rms  of R, 8, and t as 

r,, is the perpendicular distance from the corner to  the axis of symmetry. 

Let the flow properties p, p, u, and v in the vicinity of the corner be represented by 
functions of the form 

F(t,R, e) = Fc(t, e)  + Ra!(t9 ')FR(t,R, 0)  033) 

where FR(t,R,B) is bounded for  small  values of R and the exponent is greater than or 
equal to zero. If these functions are substituted into equations (B2), and i f  these equa- 
tions are then multiplied by R and the limit is taken as R approaches zero, the t e rms  
involving Q! and FR are eliminated and the following equations are obtained: 

apC + pcvc = 0 uc + pc ae 

pcuc($ + ..) + - - - 0 
a e  
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APPENDIX B - Continued 

These equations are the Prandtl-Meyer equations where, by assumption, p,, p,, u,, 
and vc are functions of the time t as well as of the angle 8. 

The solution for  the flow properties p, p, u, and v at the corner are of the 
form 

is the smallest  value of x where x ~ , ~ ~ ~  2 x 5 x 
associated with the corner for which u = a, if 8* is the angle 8 for x = x*, and if 
the flow properties and the angle 8 for x = x ~ , ~ ~ ~  are denoted by pc, pc, 

and Oc, respectively, then the solution at the corner which satisfies equations (B4) can 
be written as 

c, min and y =  -yb. If x* 2 x c, max 

P = P c  

P = Pc 

u =  u  COS^ - ec )  C 

v = u s in(@ - ec)  C 

P = pc(fios 2 - \ -  
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APPENDIX B - Concluded 

2 x 2 x*. The quantities ac and M C  in equations (B6) a r e  the speed of for Xc,max - 
sound and the Mach number, respectively, a t  the corner for x = x c, min' 
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Figure 5.- Surface pressure and velocity distributions for flat-face cylinder with rc/rb = 0.4. 
y = 1.4; M, = 2.49. 
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Figure 6.- Present results for distributions of flow properties across shock layer 
for flat-face cylinder with re/% = 0.4. y = 1.4; % = 2.49. The coordinate Y 
has values of 1 and 0 at the shock wave and body surface, respectively. 
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Figure 9 .  - Present  r e s u l t s  for d i s t r i b u t i o n s  of flow p r o p e r t i e s  across  shock l a y e r  
f o r  f l a t - f a c e  cy l inder  with sharp corner.  y = 1.4; % = 2.81. The coordinate  Y 
has values  of 1 and 0 at  t h e  shock wave and body sur face ,  respec t ive ly .  
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Figure 11.- Comparison of r e s u l t s  for spher ica l ly  blunted 60' cone with rn/rb = 0.25.  y = 1.4; 
M, = 10 except as noted. 
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